Abstract

Under the dual pressures of climate change and urbanization, cities in China are experiencing increasingly severe flooding. Using the Yushan Lake area in Ma’anshan City, Anhui Province, as a case study, we employed the InfoWorks Integrated Catchment Management (ICM) hydraulic model to analyze the drainage and flood prevention system of the region and assess the current infrastructure for drainage and flood control. There are 117 pipelines with a return period lower than one year for stormwater and combined sewer systems, accounting for 12.3% of the total number of pipelines. The number of pipelines meeting the one-year but not the three-year return period standard is 700, representing 70.2%. Only 17.5% of the pipelines are capable of handling events exceeding the one-year standard. In simulating a 24 h, 30-year return period rainfall event, the results indicate that floodwater accumulation in the study area is predominantly between 0.15 m and 0.3 m. Most risk areas are classified as low risk, covering an area of 36.398 hectares, followed by medium and high-risk areas, which cover 8.226 hectares and 3.087 hectares, respectively. The Ma’anshan Yushan Lake area has, overall, certain flood control capabilities but faces flood risks during storms with return periods exceeding three years. This research offers valuable insights for improving urban flood management in Ma’anshan City through the development of a stormwater management model for the Yushan Lake area.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.