Abstract
Urban ventilation corridors introduce fresh air into urban interiors and improve urban livability, while mitigating the urban heat island (UHI) effect. However, few studies have assessed the impact of urban ventilation corridors on UHI intensity (UHII) from the perspective of the local climates of different cities. Therefore, this study integrated multisource data to construct ventilation corridors from the perspective of local climate zone (LCZ) and analyzed its impact on UHII. The results showed the following: (1) the average UHII of constructed LCZs was higher than that of natural LCZs, among which the building type LCZ10 (heavy industry) had the highest intensity (5.77°C); (2) in extracted ventilation corridors, the pixel number of natural LCZs was substantially larger than that of constructed LCZs, among which LCZE (bare soil/paved) was the largest; and (3) for natural LCZs, the average UHII of each LCZ was lower within the ventilated corridors than within the non-ventilated corridors (except for LCZG [water]), with the UHII of LCZB (scattered trees) exhibiting the greatest mitigation effect. Quantitative research on the composition and function of ventilation corridors can not only assess the ability of ventilation corridors to mitigate UHIs, but also provide a reference for urban ventilation corridor planning.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.