Abstract

Urban trees could represent important short- and long-term landscape sinks for elemental carbon (EC). Therefore, we quantified foliar EC accumulation by two widespread oak tree species-Quercus stellata (post oak) and Quercus virginiana (live oak)-as well as leaf litterfall EC flux to soil from April 2017 to March 2018 in the City of Denton, Texas, within the Dallas-Fort Worth metropolitan area. Post oak trees accumulated 1.9-fold more EC (299 ± 45 mg EC m-2 canopy yr-1) compared to live oak trees (160 ± 31 mg EC m-2 canopy yr-1). However, in the fall, these oak species converged in their EC accumulation rates, with ∼70% of annual accumulation occurring during fall and on leaf surfaces. The flux of EC to the ground via leaf litterfall mirrored leaf-fall patterns, with post oaks and live oaks delivering ∼60% of annual leaf litterfall EC in fall and early spring, respectively. We estimate that post oak and live oak trees in this urban ecosystem potentially accumulate 3.5 t EC yr-1, equivalent to ∼32% of annual vehicular EC emissions from the city. Thus, city trees are significant sinks for EC and represent potential avenues for climate and air quality mitigation in urban areas.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.