Abstract
AbstractAccurate ground motion prediction requires detailed site effect assessment, but in urban areas where such assessments are most important, geotechnical surveys are difficult to perform, limiting their availability. Distributed acoustic sensing (DAS) offers an appealing alternative by repurposing existing fiber‐optic cables, normally employed for telecommunication, as an array of seismic sensors. We present a proof‐of‐concept demonstration by using DAS to produce high‐resolution maps of the shallow subsurface with the Stanford DAS array, California. We describe new methods and their assumptions to assess H/V spectral ratio—a technique widely used to estimate the natural frequency of the soil—and to extract Rayleigh wave dispersion curves from ambient seismic field. These measurements are jointly inverted to provide models of shallow seismic velocities and sediment thicknesses above bedrock in central campus. The good agreement with an independent survey validates the methodology and demonstrates the power of DAS for microzonation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.