Abstract

The evidence regarding the relationship between postnatal exposure of air pollution and child malnutrition indicators, as well as the corresponding urban-rural disparities, is limited, especially in low-pollution area of low- and middle-income countries (LMICs). Therefore, our aim was to contrast the effect estimates of varying ambient particulate matter (PM) on malnutrition indicators between urban and rural areas in Tibet, China. Six malnutrition indicators were evaluated in this study, namely, Z-scores of height for age (HFA), Z-scores of weight for age (WFA), Z-scores of weight for height (WFH), stunting, underweight, and wasting. Exposure to particles with an aerodynamic diameter ≤2.5 micron (μm) (PM2.5), particles with an aerodynamic diameter ≤10 μm (PM10) and particles with an aerodynamic diameter between 2.5 and 10 μm (PMc) was estimated using satellite-based random forest models. Linear regression and logistic regression models were used to assess the associations between PM and the above malnutrition indicators. Furthermore, the effect estimates of different PM were contrasted between urban and rural areas. A total of 2511 children under five years old were included in this study. We found long-term exposure to PM2.5, PMc, and PM10 was associated with an increased risk of stunting and a decreased risk of underweight. Of these air pollutants, PMc had the strongest association for Z-scores of HFA and stunting, while PM2.5 had the strongest association for underweight. The results showed that the odds ratio (OR) for stunting were 1.36 (95% confidence interval (CI) = 1.06 to 1.75) per interquartile range (IQR) microgrammes per cubic metre (μg/m3) increase in PM2.5, 1.80 (95% CI = 1.30 to 2.50) per IQR μg/m3 increase in PMc and 1.55 (95% CI = 1.17 to 2.05) per IQR μg/m3 increase in PM10. The concentrations of PM were higher in urban areas, and the effects of PM on malnutrition indicators among urban children were higher than those of rural children. Our results suggested that PM exposure might be an important trigger of child malnutrition. Further prospective researches are needed to provide important scientific literature for understanding child malnutrition risk concerning postnatal exposure of air pollutants and formulating synthetically social and environmental policies for malnutrition prevention.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call