Abstract

Abstract. The paper describes two different methods for extraction of two types of urban objects from lidar digital surface model (DSM) and digital aerial images. Within the preprocessing digital terrain model (DTM) and orthoimages for three test areas were generated from aerial images using automatic photogrammetric methods. Automatic building extraction was done using DSM and multispectral orthoimages. First, initial building mask was created from the normalized digital surface model (nDSM), then vegetation was eliminated from the building mask using multispectral orthoimages. The final building mask was produced employing several morphological operations and buildings were vectorised using Hough transform. Automatic extraction of other green urban features (trees and natural ground) started from orthoimages using iterative object-based classification. This method required careful selection of segmentation parameters; in addition to basic spectral bands also information from nDSM was included. After the segmentation of images the segments were classified based on their attributes (spatial, spectral, geometrical, texture) using rule set classificator. First iteration focused on visible (i.e. unshaded) urban features, and second iteration on objects in deep shade. Results from both iterations were merged into appropriate classes. Evaluation of the final results (completeness, correctness and quality) was carried out on a per-area level and on a per-object level by ISPRS Commission III, WG III/4.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.