Abstract

Urbanization modifies land surface characteristics with consequent impacts on local energy, water, and carbon dioxide (CO2) fluxes. Despite the disproportionate impact of cities on CO2 emissions, few studies have directly quantified CO2 conditions for different urban land cover patches, in particular for arid and semiarid regions. Here, we present a comparison of eddy covariance measurements of CO2 fluxes (FC) and CO2 concentrations ([CO2]) in four distinct urban patches in Phoenix, Arizona: a xeric landscaping, a parking lot, a mesic landscaping, and a suburban neighborhood. Analyses of diurnal, daily, and seasonal variations of FC and [CO2] were related to vegetation activity, vehicular traffic counts, and precipitation events to quantify differences among sites in relation to their urban land cover characteristics. We found that the mesic landscaping with irrigated turf grass was primarily controlled by plant photosynthetic activity, while the parking lot in close proximity to roads mainly exhibited the signature of vehicular emissions. The other two sites that had mixtures of irrigated vegetation and urban surfaces displayed an intermediate behavior in terms of CO2 fluxes. Precipitation events only impacted FC in urban patches without outdoor water use, indicating that urban irrigation decouples CO2 fluxes from the effects of infrequent storms in an arid climate. These findings suggest that the proportion of irrigated vegetation and urban surfaces fractions within urban patches could be used to scale up CO2 fluxes to a broader city footprint.

Highlights

  • Urbanization modifies land surface characteristics and impacts local energy, water, and carbon dioxide (CO2) fluxes, when large changes are made as compared to pre-existing conditions [1,2,3,4,5,6,7,8,9]

  • Temporal variations in meteorological variables reflect the seasonal progression from winter to summer and the influence of individual precipitation events occurring across all seasons

  • xeric landscaping (XL), parking lot (PL), and reference site (REF) acted as net sources of carbon dioxide during the sampling period, while mesic landscaping (ML) was a carbon dioxide sink

Read more

Summary

Introduction

Urbanization modifies land surface characteristics and impacts local energy, water, and carbon dioxide (CO2) fluxes, when large changes are made as compared to pre-existing conditions [1,2,3,4,5,6,7,8,9]. It is possible that urban vegetation can potentially have an important role in modulating CO2 exchanges in cities by counteracting to some extent those positive fluxes through the photosynthetic activity of plants. This urban vegetation effect is modulated by the amount of available water, provided in arid and semiarid cities through irrigation [7, 35, 36], and the availability of incoming solar radiation affected by cloud cover. The competing effects of anthropogenic emissions (sources) and plant-mediated CO2 fixation (sinks) in arid cities are not well understood at present [9, 16, 25, 30, 37,38,39]

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call