Abstract

The urban heat island (UHI) phenomenon is caused by the anthropic alteration of the natural environment by urban expansion, its impermeable surfaces, and anthropic activities. In addition, urban morphology can also contribute to the increase in temperature in cities. The UHI effect can be described as an urban climate that is generally characterized by higher temperatures in densely built-up areas compared to surrounding areas. This effect impacts the environmental stress of the city and directly affects the health and quality of life of its inhabitants. Therefore, it is necessary to allocate resources to understand the UHI mechanism in cities in order to propose appropriate mitigation measures that will reduce energy consumption and improve living conditions. In this context, this research was aimed at analyzing the behavior of urban heat islands by replacing asphalt with cool paving materials (concrete) in roadways. Through computer simulations, using the ENVI-met software, the thermal variations of urban heat islands were examined. The city of Cuenca (Ecuador) was selected as the study area. The day of the analysis was 22 January 2020, which was recorded as the warmest day of the year, registering an average temperature of 16 °C. The findings of this research evidenced that, by replacing asphalt pavements with concrete pavements in the analyzed zones, land surface temperature (LST) could be reduced by 8 °C and the global LST of the studied areas could be reduced by approximately 3 °C. Consequently, the mean air temperature of the study areas reflected a decrease of up to 0.83 °C.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call