Abstract
Urban flooding disasters have become increasingly frequent in rural-urban fringes due to rapid urbanization, posing a serious threat to the aquatic environment, life security, and social economy. To address this issue, this study proposes a flood disaster risk assessment framework that integrates a Weighted Naive Bayesian (WNB) classifier and a Complex Network Model (CNM). The WNB is employed to predict risk distribution according to the risk factors and flooding events data, while the CNM is used to analyze the composition and correlation of the risk attributes according to its network topology. The rural-urban fringe in the Guangdong–Hong Kong–Macao Greater Bay Area (GBA) is used as a case study. The results indicate that approximately half of the rural-urban fringe is at medium flooding risk, while 25.7% of the investigated areas are at high flooding risk. Through driving-factor analysis, the rural-urban fringe of GBA is divided into 12 clusters driven by multiple factors and 3 clusters driven by a single factor. Two types of cluster influenced by multiple factors were identified: one caused by artificial factors such as road density, fractional vegetation cover, and impervious surface percentage, and the other driven by topographic factors, such as elevation, slope, and distance to waterways. Single factor clusters were mainly based on slope and road density. The proposed flood disaster risk assessment framework integrating WNB and CNM provides a valuable tool to identify high-risk areas and driving factors, facilitating better decision-making and planning for disaster prevention and mitigation in rural-urban fringes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.