Abstract

BackgroundAmong Dermanyssoidea, the chicken red mite (Dermanyssus gallinae) and the northern fowl mite (Ornithonyssus sylviarum) are considered to be the cause of high economic losses endured by the poultry industry in the Holarctic region, with O. sylviarum predominating in North America and D. gallinae in Europe. Both species have a short life-cycle (thereby allowing a rapid build-up of massive infestations), a wide range of hosts, synanthropic presence and the ability to bite humans. The aim of this study was to analyze dermanyssoid mite specimens, collected in two human dwellings and two racing pigeon premises in different urban areas in Hungary, with molecular–phylogenetic methods.MethodsMite species were identified morphologically. This was followed by DNA extraction and molecular–phylogenetic analyses of selected mites, based on the cytochrome c oxidase subunit I (cox1) and 28S rRNA (28S) genes.ResultsMites that had invaded a home from a pigeon nest and were linked to human dermatitis were morphologically and molecularly identified as D. gallinae special lineage L1. Specimens collected at all other sampling sites were identified as O. sylviarum, including mites that had invaded a home from a house martin (Delichon urbicum) nest, as well as those which were collected from racing pigeons. House martin- or pigeon-associated O. sylviarum specimens showed the highest sequence identity and closest phylogenetic relationship with conspecific mites reported in GenBank from Israel or Canada, respectively.ConclusionsDetailed morphological and molecular–phylogenetic analyses of D. gallinae lineage L1 confirmed its status as a cryptic species within D. gallinae (s.l.). Taking into account the well-documented latitudinal migratory routes of house martins between Hungary and Africa, O. sylviarum associated with this bird species most likely arrived on its host from the eastern Mediterranean region. On the other hand, mites collected from pigeons in Hungary showed cox1 genetic homogeneity with North American O. sylviarum, which can only be explained by a long-distance (west-to-east intercontinental) connection of birds and their mites as part of human activity (e.g. transportation to exhibitions or trading). In summary, this is the first molecularly confirmed and phylogenetically analyzed case of O. sylviarum infestation of birds in Hungary, implicating urban environment and involving distant parts of the country. This is also the first report of D. gallinae lineage L1 in central Europe.Graphical

Highlights

  • Among Dermanyssoidea, the chicken red mite (Dermanyssus gallinae) and the northern fowl mite (Ornithonyssus sylviarum) are considered to be the cause of high economic losses endured by the poultry industry in the Holarctic region, with O. sylviarum predominating in North America and D. gallinae in Europe

  • We report here the first case of a molecularly confirmed and phylogenetically analyzed O. sylviarum infestation of birds in Hungary that implicates urban environments and involves distant locations in Hungary

  • Our findings highlight the importance of future large-scale molecular–phylogenetic analyses of O. sylviarum in an international context, especially since relevant data have been reported to date only from a few European countries. This is the first report of D. gallinae lineage L1 in central Europe

Read more

Summary

Introduction

Among Dermanyssoidea, the chicken red mite (Dermanyssus gallinae) and the northern fowl mite (Ornithonyssus sylviarum) are considered to be the cause of high economic losses endured by the poultry industry in the Holarctic region, with O. sylviarum predominating in North America and D. gallinae in Europe. The risk of O. sylviarum being disseminated throughout the poultry industry in Europe has increased over the years, with several countries, including France [9], Sweden [10], Bulgaria [11] and Slovakia [12], reporting the emergence/presence of O. sylviarum, mostly on wild birds and on poultry in some countries [8, 10] Both D. gallinae and O. sylviarum are characterized by a very short life-cycle (under ideal conditions approximately 1 week [6, 7]), allowing a rapid build-up of local populations [8]. They differ in that D. gallinae is a nidicolous, temporary nocturnal ectoparasite [5] that tends to complete its blood meal quickly at the first opportunity [13] while O. sylviarum is a permanent ectoparasite that completes its entire life-cycle on its host [8], allowing partial and repeated feeding [13]

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.