Abstract

This paper compares different image processing routines to identify suitable remote sensing variables for urban classifi- cation in the Marion County, Indiana, USA, using a Landsat 7 Enhanced Thematic Mapper Plus (ETM� ) image. The ETMmultispectral, panchromatic, and thermal images are used. Incorporation of spectral signature, texture, and surface temperature is examined, as well as data fusion techniques for combining a higher spatial resolution image with lower spatial resolution multispectral images. Results indicate that incorporation of texture from lower spatial resolution images or of a temperature image cannot improve classification accuracies. However, incorporation of textures derived from a higher spatial resolution panchromatic image improves the classification accuracy. In particular, use of data fusion result and texture image yields the best classifi- cation accuracy with an overall accuracy of 78 percent and a kappa index of 0.73 for eleven land use and land cover classes.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.