Abstract

Travel time is one of the most appropriate traffic measures that can be provided to road users for easy understanding and decision making. This paper presents a simple method to predict travel time on urban arterial roads. Travel time prediction methods include historical methods, model based methods, and data driven approaches. Of these, data driven approaches capture the uncertainty and non-linearity of traffic time series better and hence could be used for travel time prediction under Indian traffic conditions effectively. Among data driven approaches, support vector regression (SVR) models predict travel times with reasonable accuracy, especially when the amount of data is less or the variability in the data is high. However, studies on the use of SVR for travel time prediction under Indian traffic conditions are limited. In this paper, SVR technique was used to predict the travel time using data collected from Bluetooth sensors placed at specific locations on an urban arterial corridor in Chennai, India. The optimum number of inputs, appropriate kernel function, cost parameter and width of tolerance for the SVR model were determined. The results obtained show that the SVR performed better than an Artificial Neural Network model and moving average approach.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.