Abstract

We develop a linear model based on a complex network approach that predicts the effect of emission changes on air pollution exposure in urban street networks including NO–NO2–O3-chemisty. The operational air quality model SIRANE is used to create a weighted adjacency matrix A describing the relation between emissions of a passive scalar inside streets and the resulting concentrations in the street network. A case study in South Kensington (London) is used, and the adjacency matrix A0 is determined for one wind speed and eight different wind directions. The physics of the underlying problem is used to infer A for different wind speeds. Good agreement between SIRANE predictions and the model is observed for all but the lowest wind speed, despite non-linearities in SIRANE's model formulation. An indicator for exposure in the street is developed, and it is shown that the out-degree of the exposure matrix E represents the effect of a change in emissions on the exposure reduction in all streets in the network. The approach is then extended to NO–NO2–O3-chemisty, which introduces a non-linearity. It is shown that a linearised model agrees well with the fully nonlinear SIRANE predictions. The model shows that roads with large height-to-width ratios are the first in which emissions should be reduced in order to maximise exposure reduction.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call