Abstract

Since primary environmental concept for long storage of nuclear waste involved assessment of water in uranium complexes depending on migration processes, the paper emphasized solid-state matrix-assisted laser desorption/ionization (MALDI) mass spectrometric (MS) and IR spectroscopic determination of UO2(NO3)2·6H2O; UO2(NO3)2·3H2O, α-, β-, and γ-UO3 modifications; UO3·xH2O (x = 1 or 2); UO3·H2O, described chemically as UO2(OH)2, β- and γ-UO2(OH)2 modifications; and UO4·2H2O, respectively. Advantages and limitation of vibrational spectroscopic approach are discussed, comparing optical spectroscopic data and crystallographic ones. Structural similarities occurred in α-γ modifications of UO3, and UO2(OH)2 compositions are analyzed. Selective speciation achieved by solid-state mass spectrometry is discussed both in terms of its analytical contribution for environmental quality assurance and assessment of radionuclides, and fundamental methodological interest related the mechanistic complex water exchange of UO3·H2O forms in the gas phase. In addition to high selectivity and precision, UV-MALDI-MS, employing an Orbitrap analyzer, was a method that provided fast steps that limited sample pretreatment techniques for direct analysis including imaging. Therefore, random and systematic errors altering metrology and originating from the sample pretreatment stages in the widely implemented analytical protocols for environmental sampling determination of actinides are significantly reduced involving the UV-MALDI-Orbitrap-MS method. The method of quantum chemistry is utilized as well to predict reliably the thermodynamics and nature of U-O bonds in uranium species in gas and condensed phases.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.