Abstract

The uranyl-(VI) cation (UO(2) (2+)) forms strong complexes with accessible phosphates of nucleic acid (DNA and RNA) backbones. Upon excitation with long wavelength ultraviolet light (lambda = 300-420 nm), uranyl ions bound to backbone phosphates oxidize proximal sugars and induce nucleic acid backbone cleavage. Thus the uranyl(VI) ion functions as a very specific and efficient photochemical probe for identifying ligand(protein)-phosphate contacts in nucleic acid complexes as well as potential (high affinity) cation (e.g., Mg(2+))-binding sites in folded nucleic acids. Finally, the cleavage modulation of duplex DNA reflects helix conformation in terms of minor groove width, due to preferential affinity/oxidation efficiency for such regions of the DNA helix.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.