Abstract

Different inner-sphere coordination environments are observed for the uranyl nitrate complexes formed with octyl-phenyl-N,N-diisobutylcarbamoylmethylphosphine oxide and tributyl phosphate in dodecane and in the hydrophobic ionic liquids (ILs) [C(4)mim][PF(6)] and [C(8)mim][N(SO(2)CF(3))(2)]. Qualitative differences in the coordination environment of the extracted uranyl species are implied by changes in peak intensity patterns and locations for uranyl UV-visible spectral bands when the solvent is changed. EXAFS data for uranyl complexes in dodecane solutions is consistent with hexagonal bipyramidal coordination and the existence of UO(2)(NO(3))(2)(CMPO)(2). In contrast, the complexes formed when uranyl is transferred from aqueous nitric acid solutions into the ILs exhibit an average equatorial coordination number of approximately 4.5. Liquid/liquid extraction results for uranyl in both ILs indicate a net stoichiometry of UO(2)(NO(3))(CMPO)(+). The concentration of the IL cation in the aqueous phase increases in proportion to the amount of UO(2)(NO(3))(CMPO)(+) in the IL phase, supporting a predominantly cation exchange mechanism for partitioning in the IL systems.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.