Abstract
The flow structure in tight lattice is still of great interest to nuclear industry. An accurate prediction of flow parameter in subchannels of tight lattice is likable. Unsteady Reynolds averaged Navier Stokes (URANS) is a promising approach to achieve this goal. The implementation of URANS approach will be validated by comparing computational results with the experimental data of Krauss. In this paper, the turbulent flow with different Reynolds number (5000–215000) and different pitch-to-diameter(P/D) (1.005–1.2) are simulated with computational fluid dynamics (CFD) code CFX12. The effects of the Reynolds number and the bundle geometry (P/D) on wall shear stress, turbulent kinetic energy, turbulent mixing and large scale coherent structure in tight lattice are analyzed in details. It is hoped that the present work will contribute to the understanding of these important flow phenomena and facilitate the prediction and design of rod bundles.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.