Abstract

A new chelating resin (glycidyl methacrylate/divinylbenzene/pentaethylenehexamine (GMA/DVB/PEHA)) for uranium(VI) and thorium(IV) has been developed by functionalizing GMA/DVB with PEHA. The adsorption of U(VI) and Th(IV) ions onto the functionalized GMA/DVB/PEHA were investigated as a function of pH value, contact time, and temperature using batch adsorption technique. The results showed that U(VI) and Th(IV) adsorption onto GMA/DVB/PEHA was strongly dependent on pH. Kinetic studies revealed that the adsorption process achieved equilibrium within 15 and 90 minutes for Th(IV) and U(VI), respectively, and followed a pseudo-second-order rate equation. The isothermal data correlated with the Langmuir model better than the Freundlich model. Thermodynamic data indicated the spontaneous and endothermic nature of the process. The maximum adsorption capacity of U(VI) and Th(IV) were found to be 114 and 78 mg/g, respectively. Quantitative recovery of uranium and thorium were achieved by desorbing the loaded GMA/DVB/PEHA with 0.5 M HNO3

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.