Abstract

Costly disposal of uranium (U) contaminated sediments is motivating research on in situ U(VI) reduction to insoluble U(IV) via directly or indirectly microbially mediated pathways. Delivery of organic carbon (OC) into sediments for stimulating U bioreduction is diffusion-limited in less permeable regions of the subsurface. To study OC-based U reduction in diffusion-limited regions, one slightly acidic and another calcareous sediment were treated with uranyl nitrate, packed into columns, then hydrostatically contacted with tryptic soy broth solutions. Redox potentials, U oxidation state, and microbial communities were well correlated. At average supply rates of 0.9 micromol OC (g sediment)(-1) day(-1), the U reduction zone extended to only about35-45 mm into sediments. The underlying unreduced U(VI) zone persisted over 600 days because the supply of OC was diffusion-limited and metabolized within a short distance. These results also suggestthat low U concentrations in groundwater samples from OC-treated sediments are not necessarily indicative of pervasive U reduction because interior and exterior regions of such sediment blocks can contain primarily U(VI) and U(IV), respectively.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.