Abstract

U(VI)-containing acidic wastewater produced from uranium mining sites is an environmental hazard. Highly efficient capture of U(VI) from such wastewater is of great significance. In this study, a mesoporous core–shell material (i.e. γ-Fe2O3@meso-SiO2) with magnetically and vertically oriented channels was rationally designed through a surfactant-templating method. Batch experiment results showed that the material had an efficiency level of >99.7% in removing U(VI) and a saturated adsorption capacity of approximately 41.40 mg/g, with its adsorption reaching equilibrium in 15 min. The U(VI) adsorption efficiency of the material remained above 90% in a solution with competing ions and in acidic radioactive wastewater, indicating its ability to selectively adsorb U(VI). The material exhibited high adsorption efficiency and desorption efficiency in five cycles of desorption and regeneration experiments. According to the results, the mechanism through which γ-Fe2O3@meso-SiO2 adsorbs U(VI) was dominated by chemical complexation and electrostatic attraction between these two substances. Therefore, γ-Fe2O3@meso-SiO2 is not only beneficial to control the environmental migration of uranium, but also has good selective adsorption and repeated regeneration performance when used to recover U(VI) from weakly acidic wastewater in uranium mining.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.