Abstract

The permeation of U(VI) from nitric acid medium using supported liquid membrane (SLM) technique has been studied employing varying compositions of feed (uranium concentration and acidity), carrier, and receiving phase. Microporous polytetrafluoroethylene (PTFE) membranes were used as a solid support and 2-ethylhexyl phosphonic acid mono-2-ethylhexyl ester (PC88A) either alone or as a mixture of neutral donors like tri-n-butyl phosphate (TBP), tris(2-ethylhexyl) phosphate (TEHP), and tri-n-octyl phosphine oxide (TOPO) dissolved in n-parrafin as the carrier. Oxalic acid/Na2CO3 solutions were used as the receiving phase. The permeability coefficient (P) of U(VI) decreased with increased nitric acid concentration up to 3 M HNO3 and thereafter increased up to 5 M HNO3. Uranium permeation was also investigated from its binary mixtures with other metal ions such as Zr(IV), Th(IV), and Y(III) at 2 M HNO3 employing 0.1 M PC88A/n-paraffin as the carrier, and 0.5 M oxalic acid as the receiver phase. The presence of neutral donors in the carrier solution enhanced the permeation of U(VI) across the SLM in the following order: TEHP ∼ TBP > TOPO using 0.1 M oxalic acid as receiver phase. There was significant enhancement in uranium transport for feed acidity ≤2 M HNO3 employing 1 M Na2CO3 as the receiver phase. These studies suggested that 0.1 M PC88A and 0.5 M oxalic acid as carrier and receiver phases appear suitable for selective and faster transport of uranium from the uranyl nitrate raffinate (UNR) waste solutions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.