Abstract
AbstractUranium is a redox-sensitive element and can be immobilized by reduction from soluble U(VI) to insoluble U(IV). By performing flow-through experiments, uranium mobility was observed under different redox conditions. Inflow solutions with different electron acceptors, nitrate and sulphate, and a control inflow solution were used to obtain different sedimentary redox conditions. Uranium was about one order more mobile when nitrate was used than when sulphate or the control was used. The difference in uranium mobility is attributed to the reduction of uranium. Even though uranium mobility is heavily dependent on the redox state of uranium, sedimentary concentrations of organic matter argue that organic matter is the most important complexing agent and that this determines the retardation of uranium.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.