Abstract
This study provides new information on the timing and distribution of Mesozoic magmatic events in the Sierra Nevada batholithic complex chiefly between 36° and 37°N. latitude. U‐Pb ages have been determined for 133 zircon and 7 sphene separates from 82 samples of granitoid rocks. Granitoid rocks in this area range in age from 217 to 80 m.y. Triassic intrusions are restricted to the east side of the batholith; Jurassic plutons occur south of the Triassic plutons east of the Sierra Nevada, as isolated masses within the Cretaceous batholith, and in the western foothills of the range; Cretaceous plutons form a continuous belt along the axis of the batholith and occur as isolated masses east of the Sierra Nevada. No granitic intrusions were emplaced for 37 m.y. east of the Sierra Nevada following the end of Jurassic plutonism. However, following emplacement of the eastern Jurassic granitoids, regional extension produced a fracture system at least 350 km long into which the dominantly mafic, calc‐alkalic Independence dike swarm was intruded 148 m.y. ago. The dike fractures probably represents a period of regional crustal extension caused by a redistribution of the regional stress pattern accompanying the Nevadan orogeny. Intrusion of Cretaceous granitic plutons began in large volume about 120 m.y. ago in the western Sierra Nevada and migrated steadily eastward for 40 m.y. at a rate of 2.7 mm/y. This slow and constant migration indicates remarkably uniform conditions of subduction with perhaps downward migration of parent magma generation or a slight flattening of the subduction zone. Such steady conditions could be necessary for the production of large batholithic complexes such as the Sierra Nevada. The abrupt termination of plutonism 80 m.y. ago may have resulted from an increased rate of convergence of the American and eastern Pacific plates and dramatic flattening of the subduction zone. U‐Pb ages of the Giant Forest‐alaskite sequence in Sequoia National Park are all in the range 99±3 m.y., indicating a relatively short period of emplacement and cooling for this nested group of plutons. U‐Pb ages of a mafic inclusion and its host granodiorite indicate that both were derived from a common source or that the mafic inclusion was totally equilibrated with the granodioritic magma. Comparison of isotopic ages determined by different methods such as zircon U‐Pb, sphene U‐Pb, hornblende K‐Ar, and biotite K‐Ar suggests that zircon U‐Pb ages generally approximate the emplacement age of a pluton. However, some plutons probably contain inherited or entrained old zircons, and the zircons of some samples are disturbed by younger thermal and metamorphic events. The ages reported here are consistent with U‐Pb age determinations previously made on granitic rocks to the north [Stern et al., 1981], The age distribution of granitic belts determined here is in general agreement with those established by K‐Ar dating [Evernden and Kistler, 1970] but does not differentiate the five epochs of plutonism determined in their study.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.