Abstract

Isotopic composition of uranium has previously been used to infer the depositional redox environment of uranium ore concentrates and also provide a potential signature to inform nuclear forensic investigations. This study evaluates the diagnostic power of the U isotope signature by investigating (1) the heterogeneity of U isotope compositions in samples collected from the same mine and/or vein, and (2) the influence of U ore processing on 238U/235U and 234U/238U ratios. These characteristics are explored via high precision mass spectrometric measurement of vein type uranium ore samples collected predominantly from mines located in central Portugal and Southwest England. Samples collected from the same vein and mine exhibit δ238U values from −0.16 to +0.03 (±0.04) ‰ and −1.6 to −64.7 (±0.4) ‰ for δ234U (±2SD). These variations can be attributed to redox-driven isotope fractionation processes and/or U redistribution during localised leaching and re-precipitation. Analyses of residues and leachates from small-scale batch experiments designed to simulate industrial U ore leaching procedures reveal significant positive and negative changes in isotope composition in the leachate relative to the bulk material (up to 0.21 ± 0.06‰ for δ238U and 62.0 ± 0.6‰ for δ234U). These findings highlight the possibility of significantly different δ238U and δ234U of uranium ore concentrate from the same mine even if manufacturing processes remain unchanged.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call