Abstract
While uranium is the most extensively studied actinide in terms of chemical properties, there remains much to be explored about its fundamental chemistry. Organometallic and organoactinide chemistry first emerged in the 1950s with research that found inspiration from transition-metal chemistry with the synthesis and characterization of uranocene, expanding new opportunities for organoactinide chemistry. Since then, a significant amount of research has pursued many avenues characterizing the fundamental nature of the f orbitals and their modes of bonding as well as their potential in catalysis. Uranium(III/IV) arene complexes dominate much of uranium organometallic chemistry, with bonding interactions stabilized by δ-back-bonding. Recent additions to this area of chemistry include the first UI and new additions of UII organouranium compounds. Uranium-transition metal complexes are still rare and maintain UIV oxidation states, with variable bond lengths determining the transition-metal oxidation state. Resultant reactivities are discussed as synthetic complexes, and unique bonding and coordination motifs are highlighted. This Viewpoint will focus on significant developments in uranium chemistry from the last 15 years while considering key areas for future research.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.