Abstract
Abstract A novel biosorbent, i. e. Saccharomyces cerevisiae entrapped in graphene oxide (GO), polyvinyl alcohol (PVA) and alginate and cross-linked in CaCl2- boric acid solution, was prepared, characterized and applied for U (VI) biosorption. The performance of U sorption and cations release (Na, K, Ca and Mg ions) was investigated under different contact time, initial uranium concentration and initial pH. Uranium sorption equilibrium basically achieved after 360 min. The kinetic data of U biosorption and Ca release were best described by the pseudo first-order equation. Both Langmuir and Freundlich models could fit the U sorption isotherm data. With increase of initial uranium (3.7 ~ 472.2 μmol/L) and sodium concentration (78.8 ~ 3911.7 μmol/L), the cations release ((Na + K)/2 + (Ca + Mg)) decreased from 116.9 to 30.1 μmol/g when the corresponding U sorption increased from 0.6 to 77.3 μmol/g. Initial solution pH at 3 was favorable for U sorption when pH ranged from 3 to 7. With increase of uranium concentration, ion exchange played a less role in U removal. The maximum U sorption capacity reached 142.1 μmol/g, calculated from the Langmuir model at initial pH 5. The O-containing functional group, such as carboxyl on the gel bead played an important role in U adsorption according to FTIR and XPS analysis. XPS analysis showed the existence of U (VI) and U (IV) on the surface of gel bead. Ion exchange, complexation and uranium reduction involved in uranium adsorption by the immobilized active dry yeast gel beads.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.