Abstract
The attenuation of groundwater contamination via chemical reaction is traditionally evaluated by monitoring contaminant concentration through time. However, this method can be confounded by common transport processes (e.g., dilution, sorption). Isotopic techniques bypass the limits of concentration methods, and so may provide improved accuracy in determining the extent of reaction. We apply measurements of 238U/235U to a U bioremediation field experiment at the Rifle Integrated Field Research Challenge Site in Rifle, Colorado. An array of monitoring and injection wells was installed on a 100 m2 plot where U(VI) contamination was present in the groundwater. Acetate-amended groundwater was injected along an up-gradient gallery to encourage the growth of dissimilatory metal reducing bacteria (e.g., Geobacter species). During amendment, U concentration dropped by an order of magnitude in the experiment plot. We measured 238U/235U in samples from one monitoring well by MC-ICP-MS using a double isotope tracer method. A significant approximately 1.00 per thousand decrease in 238U/235U occurred in the groundwater as U(VI) concentration decreased. The relationship between 238U/235U and concentration corresponds approximately to a Rayleigh distillation curve with an effective fractionation factor (alpha) of 1.00046. We attribute the observed U isotope fractionation to a nuclear field shift effect during enzymatic reduction of U(VI)(aq) to U(IV)(s).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.