Abstract

In the current report, we have rationally designed a series of uracil-coumarin based bifunctional molecular hybrids roped by 1,2,3-triazole moiety. The designed compounds were synthesized and tested against a panel of six human cancer cell lines namely Colo-205, MCF-7, A-549, PA-1, PC-3 and Hela cells by Sulforhodamine B assay. The results indicated that the hybrid molecules can specifically inhibit the MCF-7 cancer cell proliferation amongst which A-2 was found to be most potent hybrid (GI50 = 1.55 µM) with fluorine atom as R with two carbon chain length between triazole and coumarin moieties. Cell cycle analysis revealed that A-2 significantly arrest the G2/M phase to inhibit proliferation of MCF-7 cells. Due to its mitotic arrest, A-2 was further analyzed to predict its various binding interactions within the active site of tubulin, which revealed its best binding pattern within the vinblastine binding site. In addition to this, antibacterial potential of all the synthetics was also evaluated which resulted in two hit lead molecules A-2 (MIC = 11.7 μg/mL) and A-3 (MIC = 7.23 μg/mL) that can significantly inhibit the bacterial strain Staphylococcus aureus comparable to that of standard drug levofloxacin (MIC = 3.12 μg/mL). Binding interactions within the active site of dihydrofolate reductase (DHFR) were also streamlined by using molecular docking studies. Overall studies revealed some interesting features of synthetics to be active which stated that, the compounds with electronegative atom on R and compounds with two carbon chain length between triazole and coumarin showed best results.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.