Abstract

The coupled ocean-atmosphere-wave-sediment transport (COAWST) modeling system is employed to investigate the role of wave-mixing playing in the upwelling off the west coast of Hainan Island (WHU). Waves, tides and sea surface temperature (SST) are reproduced reasonably well by the model when validated by observations. Model results suggest the WHU is tidally driven. Further investigations indicate that inclusion of wave-mixing promotes the intensity of the WHU, making the simulated SST become more consistent with remote-sensed ones. Dynamically, wave-mixing facilitates the “outcrop” of more upwelled cold water, triggering stronger WHU and leading to a three-dimensional dynamical adjustment. From the perspective of time, wave-mixing contributes to establishing an earlier tidal mixing front strong enough to generate WHU and that is, WHU may occur earlier when taking wave-mixing into consideration.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.