Abstract
We prove that adding upwards closed first-order dependency atoms to first-order logic with team semantics does not increase its expressive power (with respect to sentences), and that the same remains true if we also add constancy atoms. As a consequence, the negations of functional dependence, conditional independence, inclusion and exclusion atoms can all be added to first-order logic without increasing its expressive power. Furthermore, we define a class of bounded upwards closed dependencies and we prove that unbounded dependencies cannot be defined in terms of bounded ones.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Electronic Proceedings in Theoretical Computer Science
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.