Abstract

Conceptual blending is a mental process that serves a variety of cognitive purposes, including human creativity. In this line of thinking, human creativity is modeled as a process that takes different mental spaces as input and combines them into a new mental space, called a blend. According to this form of combinational creativity, a blend is constructed by taking the commonalities among the input mental spaces into account, to form a so-called generic space, and by projecting the non-common structure of the input spaces in a selective way to the novel blended space. Since input spaces for interesting blends are often initially incompatible, a generalisation step is needed before they can be blended. In this paper, we apply this idea to blend input spaces specified in the description logic \(\mathcal {E}\mathcal {L}^{++}\) and propose an upward refinement operator for generalising \(\mathcal {E}\mathcal {L}^{++}\) concepts. We show how the generalisation operator is translated to Answer Set Programming (ASP) in order to implement a search process that finds possible generalisations of input concepts. The generalisations obtained by the ASP process are used in a conceptual blending algorithm that generates and evaluates possible combinations of blends. We exemplify our approach in the domain of computer icons.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.