Abstract

In order to deploy CO2 capture and storage (CCS) systems to mitigate climate change, it is crucial to develop reliable models for design and operational considerations. A key element of the system is the interface between transportation and storage, namely the injection well, where various transient scenarios involving multiphase flow will occur.In the literature there are very few data relevant for validation of vertical multiphase flow models for CO2. Hence in this work, we present measurements of liquid holdup, pressure drop and flow regime for upward and downward flow of CO2 in a pipe of inner diameter 44mm at a pressure of 6.5MPa, a condition relevant for CO2-injection wells.The experimental results indicate that the flow is close to no-slip. We have compared the experimental data to predictions by well-known models for phase slip and frictional pressure drop, and the results show that overall, the best model is the simplest one – the fully homogeneous approach, in which no slip is assumed and the friction is calculated simply by employing gas-liquid mixture properties in the single-phase friction model.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.