Abstract
The effect of upward (+5°, +10°) and downward (−5°) pipe inclinations on the flow patterns, hold up and pressure gradient during two-liquid phase flows was investigated experimentally for mixture velocities between 0.7 and 2.5 m/s and phase fractions between 10% and 90%. The investigations were performed in a 38 mm ID stainless steel test pipe with water and oil as test fluids. High-speed video recording and local impedance and conductivity probes were used to precisely identify the different flow patterns. In both positive and negative inclinations the dispersed oil-in-water regime extended to lower mixture velocities and higher oil fractions compared to horizontal flow. A new flow pattern, oil plug flow, appeared at both +5° and +10° inclination while the stratified wavy pattern disappeared at −5° inclination. The oil to water velocity ratio was higher for the upward than for the downward flows but in the majority of cases and all inclinations oil was flowing faster than water. At low mixture velocities the velocity ratio increased with oil fraction while it decreased at high velocities. The increase became more significant as the degree of inclination increased. The frictional pressure gradient in both upward and downward flows was in general lower than in horizontal flows while a minimum occurred at all inclinations at high mixture velocities during the transition from dispersed water-in-oil to dual continuous flow.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.