Abstract

To investigate the flow phenomena in the primary system of a pressurized water reactor (PWR) during a loss-of-coolant accident (LOCA) occurring with a small or intermediate break, experiments were performed at the full-scale Upper Plenum Test Facility (UPTF). Within the Transient and Accident Management (TRAM) program integral and separate effect tests were carried out to study loop seal clearing and to provide data for the further improvement of computer codes concerning the reactor safety analysis. This paper describes the UPTF tests that focus on the sequence of loop seal clearance in a four-loop operation for two different cold leg break sizes and the residual water levels, the flow patterns in, and the pressure drops across a single loop seal during the clearing. The UPTF results obtained from a single-loop seal operation are compared with experimental data and correlations available in the literature. Two correlations are proposed which allow the quantification of residual water levels in the loop seal under PWR conditions. It is shown that the steam–water test results gained from the full-scale UPTF with realistic PWR loop seal geometry differ from those obtained from the full or small-scale test facilities under air–water conditions. The UPTF experiments indicate the substantial need for steam-water test data from a full-scale facility with realistic PWR geometries in order to validate PWR LOCA thermal-hydraulic system codes to predict loop seal clearing correctly.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call