Abstract

This study investigated the influence of copper oxide nanoparticles (CuONPs) and Cu2+ on the uptake, translocation and subcellular distribution of organophosphate esters (OPEs) in rice seedlings using hydroponic experiments. The OPE concentrations in roots and shoots under the OPEs+CuONPs treatment were significantly lower than those with the OPEs+Cu2+ (low level) or OPEs-only treatments, indicating that CuONPs can hinder the uptake of OPEs by root via competitive adsorption under short-term exposure. The plasma membrane permeability and antioxidant enzyme activity implied that CuONPs had a negligible impact on rice seedlings and could even reduce the toxicity of OPEs to rice root. A significant negative correlation between translocation factor and octanol-water partition coefficient was observed for the three treatments, implying an important role of hydrophobicity on the acropetal translocation of OPEs. Relatively hydrophobic OPEs were mainly adsorbed on cell wall, while hydrophilic OPEs were concentrated in cell sap. The subcellular distributions of OPEs in the OPEs+Cu2+ (high level) or OPEs+CuONPs treatments slightly differed from the OPEs-only treatment, indicating that the coexistence of Cu2+ or CuONPs with OPEs can influence the subcellular distribution of OPEs by affecting their adsorption or partitioning processes. Inhibition experiment suggested that root uptake of OPEs is a non-energy-consuming facilitated diffusion mediated by aquaporin channel, which can be slightly changed by the co-exposure of CuONPs. This study improved the understanding of uptake and translocation of OPEs by rice under the co-exposure to CuONPs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call