Abstract

This study presents a detailed kinetic investigation on the uptake, acropetal translocation and transformation of BDE-47, 6-OH-BDE-47 and 6-MeO-BDE-47 in maize (Zea mays L.) by hydroponic exposure. Root uptake followed the order: BDE-47 > 6-MeO-BDE-47 > 6-OH-BDE-47, while 6-OH-BDE-47 was the most prone to acropetal translocation. Debromination rates of BDE-47 were 1.31 and 1.46 times greater than the hydroxylation and methoxylation rates, respectively. Transformation from BDE-47 to lower brominated OH/MeO-PBDEs occurred mainly through debromination first followed by hydroxylation or methoxylation. There was no transformation from 6-OH-BDE-47 or 6-MeO-BDE-47 to PBDEs. Methylation rate of 6-OH-BDE-47 was twice as high as that of 6-MeO-BDE-47 hydroxylation, indicating methylation of 6-OH-BDE-47 was easier and more rapid than hydroxylation of 6-MeO-BDE-47. Debromination and isomerization were potential metabolic pathways for 6-OH-BDE-47 and 6-MeO-BDE-47 in maize. This study provides important information for better understanding the mechanism on plant uptake and transformation of PBDEs.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.