Abstract

Boehmeria nivea L. (ramie) is a promising phytoremediation plant for antimony (Sb)-contaminated soils. However, the uptake, tolerance, and detoxification mechanisms of ramie to Sb, which are the basis for finding efficient phytoremediation strategies, remain unclear. In the present study, ramie was exposed to 0, 1, 10, 50, 100, and 200 mg/L of antimonite (Sb(III)) or antimonate (Sb(V)) for 14 days in hydroponic culture. The Sb concentration, speciation, subcellular distribution, and antioxidant and ionomic responses in ramie were investigated. The results illustrated that ramie was more effective in the uptake of Sb(III) than Sb(V). Most of the Sb accumulated in ramie roots, with the highest level reaching 7883.58 mg/kg. Sb(V) was the predominant species in leaves, with 80.77–96.38% and 100% in the Sb(III) and Sb(V) treatments, respectively. Immobilization of Sb on the cell wall and leaf cytosol was the primary mechanism of accumulation. Superoxide dismutase (SOD), catalase (CAT), and peroxidase (POD) contributed significantly to root defense against Sb(III), while CAT and glutathione peroxidase (GPX) were the major antioxidants in leaves. CAT and POD played crucial roles in the defense against Sb(V). B, Ca, K, Mg, and Mn in Sb(V)-treated leaves and K and Cu in Sb(III)-treated leaves may be related to the biological processes of Sb toxicity mitigation. This study is the first to investigate the ionomic responses of plants toward Sb and could provide valuable information for the phytoremediation of Sb-polluted soils.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call