Abstract

Cobalt(II) and nickel(II) ions display similar chemical properties and act as hypoxia mimics in cells. However, only soluble Co(II) but not soluble Ni(II) is carcinogenic by inhalation. To explore potential reasons for these differences, we examined responses of human lung cells to both metals. We found that Co(II) showed almost 8 times higher accumulation than Ni(II) in H460 cells but caused a less efficient activation of the transcriptional factor p53 as measured by its accumulation, Ser15 phosphorylation, and target gene expression. Unlike Ni(II), Co(II) was ineffective in downregulating the p53 inhibitor MDM4 (HDMX). Co(II)-treated cells continued DNA replication at internal doses that caused massive apoptosis by Ni(II). Apoptosis and the overall cell death by Co(II) were delayed and weaker than by Ni(II). Inhibition of caspases but not programmed necrosis pathways suppressed Co(II)-induced cell death. Knockdown of p53 produced 50%-60% decreases in activation of caspases 3/7 and expression of 2 most highly upregulated proapoptotic genes PUMA and NOXA by Co(II). Overall, p53-mediated apoptosis accounted for 55% cell death by Co(II), p53-independent apoptosis for 20%, and p53/caspase-independent mechanisms for 25%. Similar to H460, normal human lung fibroblasts and primary human bronchial epithelial cells had several times higher accumulation of Co(II) than Ni(II) and showed a delayed and weaker caspase activation by Co(II). Thus, carcinogenicity of soluble Co(II) could be related to high survival of metal-loaded cells, which permits accumulation of genetic and epigenetic abnormalities. High cytotoxicity of soluble Ni(II) causes early elimination of damaged cells and is expected to be cancer suppressive.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.