Abstract

Soils of the tropics and sub-tropics are typically acid and depleted of soluble sources of silicon (Si) due to weathering and leaching associated with high rainfall and temperatures. Together with intensive cropping, this leads to marginal or deficient plant Si levels in Si-accumulating crops such as rice and sugarcane. Although such deficiencies can be corrected with exogenous application of Si sources, there is controversy over the effectiveness of sources in relation to their total Si content, and their capacity to raise soil and plant Si concentrations. This study tested the hypothesis that the total Si content and provision of plant-available Si from six sources directly affects subsequent plant Si uptake as reflected in leaf Si concentration. Two trials with potted cane plants were established with the following Si sources as treatments: calcium silicate slag, fused magnesium (thermo) phosphate, volcanic rock dust, magnesium silicate, and granular potassium silicate. Silicon sources were applied at rates intended to achieve equivalent elemental soil Si concentrations; controls were untreated or lime-treated. Analyses were conducted to determine soil and leaf elemental concentrations. Among the sources, calcium silicate produced the highest leaf Si concentrations, yet lower plant-available soil Si concentrations than the thermophosphate. The latter, with slightly higher total Si than the slag, produced substantially greater increases in soil Si than all other products, yet did not significantly raise leaf Si above the controls. All other sources did not significantly increase soil or leaf Si concentrations, despite their high Si content. Hence, the total Si content of sources does not necessarily concur with a product's provision of soluble soil Si and subsequent plant uptake. Furthermore, even where soil pH was raised, plant uptake from thermophosphate was well below expectation, possibly due to its limited liming capacity. The ability of the calcium silicate to provide Si while simultaneously and significantly increasing soil pH, and thereby reducing reaction of Si with exchangeable Al3+, is proposed as a potential explanation for the greater Si uptake into the shoot from this source.

Highlights

  • Silicon (Si) is abundant in the Earth’s crust (28.8%) (Wedepohl, 1995), it is not considered an essential element for terrestrial plants other than the Equisitaceae (Epstein, 1994)

  • Calsimag-P released greater quantities of Si than Calmasil, but the difference was significant only in the post-harvest soil sample (Figure 1A); this was despite application of Calsimag-P at a lower product rate (Table 3) to compensate for its higher total Si content

  • Concentrations of extractable Si diminished between the pre-plant and post-harvest soil samples by 59%, 77% (Calmasil), 44% (Calsimag-P), 52% (Prosil Plus), 69% (K silicate type M), and 67% (K silicate type MC) (Figure 1A)

Read more

Summary

Introduction

Silicon (Si) is abundant in the Earth’s crust (28.8%) (Wedepohl, 1995), it is not considered an essential element for terrestrial plants other than the Equisitaceae (Epstein, 1994). Among crop species that accumulate Si to levels >1.0% shoot Si dry mass (Ma and Takahashi, 2002), rice (Oryza sativa L.) and sugarcane (Saccharum spp. hybrids) have been well-studied, and are capable of removing up to 470 and 700 kg Si ha−1 annum−1, respectively, on Si-rich soils (Ross et al, 1974; Savant et al, 1997b, 1999; Meena et al, 2014). Besides being low in essential nutrients, these highly weathered soils are acidic and may be high in soluble forms of aluminum (Al) (where soil pHw < 5.5) (Sanchez, 1976; Fageria et al, 1988), which in turn can remove soluble Si through reaction to form insoluble hydroxyaluminosilicates (HASs) (Farmer et al, 1979; Doucet et al, 2001; Schneider et al, 2004)

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.