Abstract

The effect of cholesterol on the uptake of a fluorinated general anesthetic, sevoflurane (SF, fluoromethyl 2,2,2-trifluoro-1-[trifluoromethyl]ethyl ether) was studied by multinuclear, high-resolution nuclear magnetic resonance (NMR) spectroscopy in combination with a pulsed-field gradient technique. Using large unilamellar vesicles of egg phosphatidylcholine/egg phosphatidylglycerol/cholesterol as model fluid cell membranes, the (19)F and (1)H NMR chemical shifts, longitudinal relaxation times (T1), and diffusion coefficients (D(eff)) were systematically analyzed to quantify the modulation of SF uptake to the lipid membrane by cholesterol. All NMR parameters (chemical shift, T1, and D(eff)) showed that SF uptake is limited by the presence of cholesterol in the membrane. It was found that SF uptake at 40 mol% cholesterol is limited to 50%-60% of the partitioning fraction in the absence of cholesterol in the membrane. This finding is attributed to the loss of motional freedom in the rigid membrane environment, as demonstrated by the gradual slowdown of lipid mobility D(eff) with increase in cholesterol concentration from 0 mol% to 40 mol%.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.