Abstract

The uptake and fate of the emerging contaminants N-nitrosodimethylamine (NDMA) and perchlorate in phreatophytes was studied in a hydroponics system under greenhouse conditions. NDMA is a potent carcinogen, and perchlorate disrupts the functioning ofthe human thyroid gland. The rate of removal of NDMA from solution by rooted cuttings of black willow (Salix nigra) and hybrid poplar (Populus deltoides x nigra, DN34) trees varied seasonally, with faster removal in summer months when transpiration rates were highest. A linear correlation between the volume of water transpired and mass of NDMA removed from the root zone was observed, especially at higher NDMA concentrations. In bioreactors dosed with both NDMA (0.7-1.0 mg L(-1)) and perchlorate (27 mg L(-1)), no competitive uptake of NDMA and perchlorate was observed. While NDMA was primarily removed from solution by plant uptake, perchlorate was predominantly removed by rhizodegradation. In the presence of NDMA, a slower rate of rhizodegradation of perchlorate was observed, but still significantly faster than the rate of NDMA uptake. For experiments conducted with radiolabeled NDMA, 46.4 +/- 1.1% of the total 14C-activity was recovered in the plant tissues and 47.5% was phytovolatilized. The 46.4 +/- 1.1% recovered in the plants was distributed as follows: 18.8 +/- 1.4% in leaves, 15.9 +/- 5.9% in stems, 7.6 +/- 3.2% in branches, and 3.5 +/- 3.3% in roots. The poor extractability of NDMA with methanol-water (1:1 v/v) from stem and leaf tissues suggested that some fraction of NDMA was assimilated. The calculated transpiration stream concentration factor (TSCF) of 0.28 +/- 0.06 suggests that NDMA is passively taken up by phreatophytes, and mainly phytovolatilized.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.