Abstract
The uptake of gas-phase methanol by liquid sulfuric acid has been investigated over the composition range of 40−85 wt % H2SO4 and the temperature range of 210−235 K. Laboratory studies were performed with a flow-tube reactor coupled to an electron-impact ionization mass spectrometer to detect trace gases. While reversible uptake was the primary mechanism at low acid concentrations, an irreversible reaction between methanol and sulfuric acid at low temperatures, forming methyl hydrogen sulfate and dimethyl sulfate, was observed at all concentrations. At compositions >65 wt % H2SO4, more than 90% of uptake was found to be reactive. On the basis of the uptake data and the calculated liquid-phase diffusion coefficients, the product of the effective Henry's law constant (H*) and the square root of the overall liquid-phase reaction rate (kl) was calculated as a function of acid concentration and temperature. The results suggest that the reaction with sulfuric acid forming methyl hydrogen sulfate and dimethyl sulfate is the dominant loss mechanism of methanol and that the oxidation of methanol is only a minor source of hydroxyl radicals in the upper troposphere.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.