Abstract
AbstractCarbonatite originating from the Lillebukt Alkaline Complex at Stjernøy in Northern Norway possesses favorable lime and potassium (K) fertilizer characteristics. However, enrichments of barium (Ba) and strontium (Sr) in carbonatite may cause an undesired uptake by plants when applied to agroecosystems. A field survey was carried out to compare concentrations of Ba, Sr, and macronutrients in indigenous plants growing in mineral soil developed on a bedrock of apatite–biotite–carbonatite (high in Ba and Sr) and of apatite–hornblende–pyroxenite (low in Ba and Sr) at Stjernøy. Samples of soil and vegetation were collected from three sites, two on carbonatite bedrock and one on pyroxenite bedrock. Ammonium lactate (AL)‐extracted soil samples and nitric acid microwave‐digested samples of soil, grasses, dwarf shrubs, and herbs were analyzed for element concentration using ICP‐MS and ICP‐OES. Concentrations of magnesium (Mg) and calcium (Ca) in both soil (AL) and plants were equal to or higher compared to values commonly reported. A high transfer of phosphorus (P) from soil to plants indicates that the apatite‐P is available to plants, particularly in pyroxenite soil. The non‐exchangeable K reservoir in the soil made a significant contribution to the elevated K transfer from soil to plant. Total concentrations of Ba and Sr in surface soil exhibited a high spatial variation ranging from 490 to 5,300 mg Ba kg−1 and from 320 to 1,300 mg Sr kg−1. The transfer of AL‐extractable elements from soil to plants increased in the order Ba < Sr < Ca < Mg < K, hence reflecting the chemical binding strength of these elements. Concentrations of Ba and Sr were low in grasses (≈ 20 mg kg−1), intermediate in dwarf shrubs and highest in herbs. Plant species and their affinity for Ca seemed more important in explaining the uptake of Ba and Sr than the soil concentration of these elements. The leguminous plant species Vicia cracca acted as an accumulator of both Ba (1.800 mg kg−1) and Sr (2.300 mg kg−1).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.