Abstract

The multiple-indicator dilution technique was utilized to examine the hepatic uptake of albumin-bound labeled palmitate from the portal vein blood of the pentobarbital-anesthetized dog, in a fasted state and after infusion of a variety of compounds that were expected to bind to Z protein, the cellular cytosolic protein binding free fatty acids, and their acyl-CoA derivatives. Analysis of the data indicates that after infusion of alpha-bromopalmitate, 16-bromo-9-hexadecenoate, and sulfobromophthalein sodium (which also bind to albumin), the palmitate label influx, efflux, and metabolic sequestration (removal of label from the pool of free fatty acids able to leave the cell) all increase and that, after infusion of flavaspidic acid, label efflux and metabolic sequestration increase. In vitro competitive binding studies carried out on the cellular cytosol indicat that the basis for the increase in efflux and metabolic sequestration is displacement of labeled palmitate from high affinity sites on the intracellular Z protein (which are presumably in equilibrium with and may be taken to be representative of other intracellular binding sites). These studies also suggest that increased uptake is due to similar displacement from high affinity sites on serum albumin.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call