Abstract

The removal of fluoride from single component aqueous solution using Al3+‐ pretreated low‐silica synthetic zeolites (Al‐Na‐HUD, Al‐HUD, Al‐F9, and Al‐A4) was studied. The effects of adsorbent mass, initial solution pH, and initial concentration on fluoride removal in a batch system were evaluated. Equilibrium data were simulated using simple isotherms such as the Freundlich (F), Langmuir‐Freundlich (LF), Redlich‐Peterson (RP) and Dubinin‐Radushkevitch (DR) isotherms. From the DR model, initial pH effects and desorption studies, it was considered that the fluoride adsorption onto the zeolites proceeded by ion‐exchange or chemisorption mechanism. In interpreting the kinetic results, reaction kinetics (using Elovich equation) and mass transfer processes (both external mass transfer and intraparticle diffusion) were considered. Equilibrium and kinetic results of fluoride adsorption onto the adsorbents demonstrated the following order of performance: Al‐Na‐HUD>Al‐F9> Al‐HUD>Al‐A4.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.