Abstract
Uptake of macromolecules (e.g., ferritin) by M cells in follicle-associated epithelium in small and large intestine was investigated in three healthy, conventionally raised, 2- to 3-week-old, female Holstein Frisian calves. A 2.5% solution of ferritin was injected into the ligated loops in mid-jejunum, in terminal ileum, in the ascending colon adjacent to the ileocecal junction, and in the proximal loop of the ascending colon containing gut-associated lymphoid tissue. After exposure times that ranged from 82 to 165 minutes, ferritin was detected in M cells of domes in the small intestine, as well as in cells in follicle-associated epithelium of proprial lymphoid nodules and lymphoglandular complexes of colon that morphologically resembled M cells of small intestine. Ferritin was found in apical invaginations, apical vesicles, multivesicular bodies, basal vesicles, and adjacent intercellular spaces. In addition to ferritin, apical vesicles, multivesicular bodies, and intercellular spaces contained 50-nm membrane-bound particles. More ferritin was endocytosed by M cells of the small intestine than by M cells of the large intestine. In the large intestine, higher amounts of ferritin were found in M cells of follicle-associated epithelium overlying proprial lymphoid nodules than in M cells of follicle-associated epithelium in the depth of lymphoglandular complexes. Based on these results, we concluded that M cells of follicle-associated epithelium in the colon of calves provide a route for antigen uptake into the intestinal lymphoid system.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.