Abstract

A mass transfer analysis predicts that fluid motion can increase the assimilation of dissolved organics by attached compared to free-living microorganisms under certain conditions. To test this we examined the effect of advective flow and fluid shear on the uptake of model compounds (leucine and glucose) by natural assemblages of heterotrophic bacteria, collected from Roosevelt Inlet, Delaware Bay (USA), in 1989. We found that [3H]leucine uptake by cells held in fluid moving at 20 to 70 m d−1 was eight times larger than uptake by cells at a velocity of 3 m d−1. This effect was only observed at low leucine concentrations (ca. 1 nM), when uptake was likely not saturated. When we added leucine at concentrations expected to saturate leucine uptake (ca. 11 nM), fluid motion past cells did not affect uptake. Fluid flow past bacteria did not increase [3H]glucose uptake, and laminar shear rates of 0.5 to 2.1 s−1 did not increase either glucose or leucine uptake by suspended bacteria. These results indicate that fluid motion increases bacterial uptake of certain lowmolecular-weight dissolved organics only when the microorganism exists in an advective flow field. As predicted from a mass transfer model, fluid shear rates in natural systems are too low to affect bacterial uptake of such compounds.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.