Abstract

Local amine anesthetics appear to exert their effects in the charged (protonated) form on the cytoplasmic side of excitable membranes. Two features of interest are the mechanism whereby these drugs move across the membrane to the inner monolayer and the actual membrane concentrations achieved. In this work, we have investigated the influence of a K+ diffusion potential, delta psi, on the transmembrane distribution and concentration of the local anesthetic dibucaine employing large unilamellar vesicle systems. It is demonstrated that egg phosphatidylcholine large unilamellar vesicles exhibiting a delta psi (interior negative) actively accumulate dibucaine to achieve high interior concentrations. 31P and 13C nuclear magnetic resonance studies show that the internalized drug is localized to the vesicle inner monolayer, and suggest that the protonated form of the anesthetic is the species that is actively transported. The inner monolayer anesthetic concentrations thus achieved can be an order of magnitude or more larger than predicted on the basis of anesthetic lipid-water partition coefficients. It is suggested that these effects may be related to the mechanisms whereby local anesthetics are localized and concentrated at their sites of action in nerve membranes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.