Abstract

Placental nutrient provision has evolved in multiple lineages of squamate reptiles and although possible structural specializations for placentotrophy have been described in a variety of species, neither the pathways nor the mechanisms of placental transfer are known. Lizards of the Australian genus Pseudemoia are placentotrophic and have elaborate placental structures that are thought to enhance nutrient transfer. The chorioallantoic placenta, which occupies the embryonic hemisphere of the egg, is regionally diversified into a large area with low epithelial height and a smaller placentome with cuboidal or columnar epithelia. Both regions are underlain by an extensive vascular bed. The abembryonic hemisphere of the egg is covered by an omphaloplacenta, which is similar to the placentome in having cuboidal or columnar epithelia but with a different embryonic vascular supply. We tested the hypothesis that embryonic epithelial cells of the placentome and the omphaloplacenta of Pseudemoia entrecasteauxii are each capable of endocytosis. Embryos (stages 33-39) with intact extraembryonic membranes were surgically removed from the uterus and incubated in a solution containing fluorescein isothiocyanate-dextran (77,000 MW). The fluorescent label was detected in the cytoplasm of scattered populations of epithelial cells in both placental regions of all embryonic stages. We conclude that both the placentome and the omphaloplacenta of P. entrecasteauxii are sites of histotrophic nutrient transport. However, there are histological and cytological differences in the embryonic epithelia of these two placental regions. The histological differences reflect differences in the evolutionary precursors of each tissue. The cytological differences likely portray different functional specializations.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.