Abstract
The mussel Mytilus edulis is extensively used to monitor metal contamination of estuarine and marine systems. Nonetheless, the mechanisms of metal uptake are poorly understood. To characterise the systems involved in cadmium and zinc uptake, the interaction between the two metals and the effects of different calcium channel blockers (diltiazem, nifedipine, verapamil) and inhibitors of active transport and metabolism (ouabain, sodium cyanide, 2,4 dinitrophenol) on the uptake of calcium, cadmium and zinc in Mytilus edulis have been studied. To separate direct from indirect effects of the inhibitors on metal uptake, their influence on the physiological condition of the mussels was also investigated. This was done by measuring clearance, respiration and excretion rates under the different exposure regimes and determining the scope for growth as an integrative index for physiological condition. The study has shown that the uptake of cadmium and zinc by Mytilus edulis can be modulated by calcium channel blockers and other inhibitors. The inhibitors also influenced physiological condition, but a significant correlation with the effects on metal uptake did not exist in most cases. Cadmium and zinc also inhibit each other's uptake, but the type of inhibition is not yet clear. The effects of the inhibitors on cadmium and zinc uptake are very different from the effects on calcium uptake, indicating that cadmium and zinc are preferentially taken up through other gateways. Overall, a significant degree of linear association is found between the effects of the inhibitors on the uptake of cadmium and zinc, suggesting common uptake routes. In addition, the effects of the calcium channel antagonist on the uptake of the metal ions are organ dependent, indicating that other types of channels are involved in the uptake of the metal ions in the gills and digestive system.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.